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Abstract. The well known store-and-forward model of urban network is concerned. An effective 

numerical algorithm of Kalman observer is represented. The proposed approach is based on resolvent 

method and use special structure of the model and relation between discrete and continuous type alge-

braic Riccati equations. In a final part of the paper a numerical performance was evaluated to show an 

efficiency of the proposed approach. 

Keywords: Kalman observer, algebraic Riccati equation, resolvent method, urban network. 

1 Problem formulation  

An urban transportation system is the network of intersections which are controlled by the traffic sig-

nals. The well known Gazis and Potts store-and-forward model [1], [2] of the traffic network was studied 

in the paper. In the oversaturated urban network a coming to intersections vehicles generate n  queues 

with ix  vehicles in it. Let low subscript  1,2,...,i n  indicates any variable that is related to the i-th 

queue. Figure 1 illustrates all flows related to i-th queue.· 

  

Fig. 1. The flows related with i-th queue 

On figure 1 are denoted: ir  and iq  are the external network’s inflow and outflow respectively; 
in

id  and 
out

id  are the exit flow within i-th link respectively; any ,i j denote exchange flow from j-th to i-th queue. 

Traffic signals change periodically their phases during one cycle period c  to provide each queue right 

of way. Each phase corresponding to the i-th queue comprises a loss time il  and an effective green time 
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ig . Then, during traffic signals control period  ,  1kT k T   , a road network may be represented as a 

discrete-time linear state-space model  
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where T is the discrete time step (as usual equal to cycle period c ); 0,1,...k   is the discrete-time index; 

 1 2( ) , , ..., n

nT
k x x x R x  is the state vector; ( ) mk Ru  and  1 2( ) , , ..., n

nT
k w w w R w  are 

the control and disturbances vectors respectively, are the deviations from their nominal values; m  is a 

number of  , 1,2,..., ,e

jg j m m n   independent effective green times 
ig ; ( )ky , 

 1 2( ) , , ..., n

nT
k v v v R v  are measurement and measurement noise vectors respectively; finally 

model (1) constant matrices can be written as 

   1 2, , , , ..., ,n m n n

d n d d n d nR diag f f f R     A I B F C I , (2) 

where nI  is a n n  identity matrix and dB  is a matrix containing the network characteristics (network 

topology, saturation flows, average turning rates). 

For the system (1) the processes ( )kw , ( )kv  may be supposed as Gaussian centered stationary white 

noises with covariance matrices  ( ) ( ) 0T

dE k k  w w Q ,  ( ) ( ) 0T

dE k k  v v R  respectively.  

Obviously processes iv  are independent to each other and appropriate covariance matrix can be written 

as  1 2, , ...,d d d

d ndiag r r r   R . Then, as it was mentioned matrix dB  contain average turning rates. 

So if in the actual flow the passed vehicles were divided not proportionally to the mentioned rates then 

overflow of one direction means underflow of another one direction, i.e. processes iw  are correlated to 

each other. Due to this fact the covariance matrix dQ  is a symmetric matrix.  

An effective control [2] schemes of the urban traffic needs the estimation of the queue lengths despite 

of external disturbances and measurement noises. The optimal Kalman estimator [4] construct a state es-

timate ˆ( )kx
 
that minimizes the mean square error  

    T
ˆ ˆ( ) ( ) ( ) ( ) minE k k k k  x x x x  (3) 

and is represented as the following state equation 
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ˆ ˆ ˆ ˆ ˆ( 1)  ( )  ( )  ( ) ( ) , (0)d d d dk k k k k     x A x B u L y C x x x , (4) 

where estimator gain matrix  dL  is given by 
1( )T T

d d d dd d

 L A XC C XC R ; 

X  is derived by solving a discrete algebraic Riccati equation (DARE) 

 
1( )T T T T T

d d d d d d d d d d d d

   X A XA F Q F A XC C XC R C XA . (5) 

The paper studies question of building Kalman estimator (4) for urban transportation network. As it is 

seen the problem (3) solution lies in an effective numerical algorithm for DARE (5) with respect of spe-

cial structure of matrices (2). The paper proposes solution of the problem by resolvent method. 

2 Building of discrete Kalman estimator for urban transportation network 

by resolvent method 

2.1 Development of resolvent method 

It is known [3] that there is a relation between DARE and continuous type algebraic Riccati equation 

(CARE)  
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T
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This relation allow us to use numerical algorithm to solve DARE by solving CARE with known ma-

trices of (6) expressed as  
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Stabilizing solution of CARE can be found by resolvent method [4] from linear equation  

 2 1 2 ,n n U X U 0 , 2

1 2, n nR U U , (8) 

where 2 2n n  real matrix  1 2U U U  is defined as integral 
1
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In the paper for matrix U  has been found a representation  

 20.5 n U I HS , (9) 

where S =
1

1

0

n
k

n k

k



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 G , 2G H ; (10) 

 0 1 1 0...m m m m          , 0 1  , 0,1,..., 1m n  ; (11) 

1 2 1, ,..., n     are coefficients of polynomial 
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are values of quadratic functionals, which, as it shown in the paper, can be easily computed as n definite 

integrals. 

Then, for 2 2n n  sizes matrices 2G H , S , U , , 1,2,...k k G  were considered block representation 

with n n  size matrices 
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Then, were proved symmetric properties for matrices blocks  

 22 11 12 12 21 21, ,T T T    G G G G G G , 
11 22 12 12 21 21, ,T T T

k k k k k k    G G G G G G ;  

 22 11 12 12 21 21, ,T T T    S S S S S S  

and were found representations for matrix (9) blocks  
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2.2 Applying resolvent method formulas for urban transportation network 

Equations (8), (9)–(16) define numerical procedure of the updated resolvent method. In the paper we 

consider advantages that give us usage of these equations with matrices (2). Let the following is denoted 
1 ,n

T

d d d d dr R Q F Q FI .  

Then matrices (7) became as  
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The expression for polynomial (12) is obtained as 11( ) det( )nx x  I G . Then, to find matrix 11S  it has 

sense to apply first linear transformation to 1G TGT  , where matrix G  is a normal Frobenius form 

matrix. Then, according to (10) 
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Finally, matrix (9) can be represented as 
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and the solution of the equation (8) can be found as a least squares solution  

 2 2 2 1 ,

T T

n n U U X U U 0
.
 (18) 

Also alternatively in the paper is shown that solution of equation (18), (17) can be found as 

  1 1

112    X AQ A P S Q A .  

In a final part of the paper a numerical performance of the proposed approach was evaluated. The eval-

uation approximately equal to 325n  flops which prove advantages of the proposed approach toward other 

approaches. 
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